リチウムイオンバッテリー。 リチウムイオンバッテリーを長持ちさせる方法とその理由 ー電池のしくみ(5)

リチウムイオンの電池の寿命の年数はどのくらい?寿命を伸ばす方法も

リチウムイオンバッテリー

商品詳細 商品説明 大人気!バートル AIR-CRAFT専用のファンとバッテリーのセット。 15,900mAhの大容量。 風量は6・8・10・12Vの4段階に切替可能。 バッテリー残量は5段階表示。 6V 出力電流3. 着用条件、環境の違いに応じて稼働時間が異なります。 ご使用時の目安としてください。 カラー [バッテリー] 35. ブラック 36. スティール [ファン] 35. ・当店のお取り扱い商品は、一部を除き「メーカー取り寄せ」によるご用意となります。 在庫状況の確認・更新には注意を払っておりますが、お客様からご注文をいただいた後でメーカーへ商品を発注しますので、その時点で既にメーカー側に在庫がなく、商品がご用意出来ない場合もございます。 誠に恐れ入りますが、その点をご理解・ご了承いただいた上でご注文されますよう、お願い申し上げます。 関連商品 AIR CRAFT シリーズ(コーディネートアイテム) 価格 9,140円 価格 11,590円 価格 13,590円 価格 11,590円 価格 11,590円 価格 2,270円 価格 2,280円 価格 1,860円 価格 1,490円 価格 5,120円 価格 11,390円 価格 16,890円 価格 9,750円 価格 2,990円 価格 11,000円 価格 4,440円 価格 4,750円 価格 4,490円 価格 4,600円 価格 4,250円 価格 2,980円 価格 2,980円 価格 4,100円 価格 7,890円 価格 6,460円 価格 4,070円 価格 2,990円 価格 3,090円 価格 2,990円 価格 3,090円 価格 3,410円 価格 3,400円 価格 3,120円 価格 4,070円 価格 4,070円 価格 5,060円 価格 4,270円 価格 1,790円 価格 5,800円 価格 4,590円 価格 1,790円 価格 1,790円 価格 1,780円 価格 1,510円 価格 2,170円 価格 6,720円 価格 6,390円 価格 6,390円 価格 7,030円 価格 5,990円.

次の

AZ | HOME

リチウムイオンバッテリー

リチウムイオン電池とは リチウムイオン電池は、化学的な反応(酸化・還元反応)を利用して直流の電力を生み出す電気デバイスです。 正極と負極の間でリチウムイオンが行き来し充電と放電が可能で、繰り返し使用することができるので、リチウムイオン二次電池とも呼ばれます。 その構造は正極・負極と電解質で構成され、一般に、正極にはリチウムの酸化物が、負極には黒鉛(グラファイト)などが、電解質には液状またはゲル状のリチウム塩の有機電解質が用いられています。 エネルギー密度が高いと、小型で軽量のバッテリーを作ることができます。 下の図は単位体積・単位重量あたりの各種電池のエネルギー量を表したものです。 このため電池の電圧が高ければ、大きな出力を得やすくなります。 また充電の際も大きな電流を受け入れて短時間で充電できることが求められます。 このため使用できる充放電の回数が多いほど2次電池としての性能が優れているといえます。 一時期リチウムイオン電池関連の事故が社会問題となりましたが、その後改良・品質改善を重ねて安全な電池として広く世に普及しています。 電池の値段も非常に重要です。 リチウムイオン電池が世界中で普及するにつれて価格競争も激化し、コスト削減が進んで低価格化が進んでいます。 その他、リチウムイオン電池は使用できる動作温度範囲が広いこと、自己放電率が低いことなども他の電池に優れた特長といえます。 リチウムとは リチウム(Lithium、元素記号:Li)は、原子番号3番、原子量6. 941のアルカリ金属類に属する元素です。 学生のころ元素周期表を「水平リーベ僕のフネ・・・」と暗記した方もいると思いますが、「水平リーベ」の「リー(Li)」が実はリチウムなのです。 銀白色のやわらかい金属でナイフで切ることもでき、また金属類の中で最も比重が軽い金属です。 反応性が非常に高く、空気中でも窒素と容易に反応して窒化リチウム(LiN3)ができてしまい、また水と反応すると激しく燃焼するため、保管する際は油やナフサ、アルゴンなどの中で保管しなければなりません。 またリチウムは強い腐食性・炎症性をもつ激毒物であり、人体に有害なので取扱いには十分に注意する必要があります。 リチウムの埋蔵量 リチウムは地球上に広く分布していますが、反応性が高いため単体としては存在しません。 海水には多くのリチウムが含まれ、総量で2300億トンあるものと推定されています。 地上ではペタル石(葉長石)、リチア雲母、リチア輝石、ヘクトライト粘土などに含まれる形で存在し、特に水分蒸発量の多い塩湖などにおいて長い時間をかけて凝縮され、鉱床として存在しています。 鏡面のように美しい湖面で有名なボリビアのウユニ塩湖には、全世界の鉱石リチウム埋蔵量の約半分にあたる約540万トンが埋蔵されていると推定されており、ついで約300万トンがチリのアタカマ塩湖に埋蔵されているとされています。 国別ではチリ、ボリビア、オーストラリア、アルゼンチン、中国などに多く埋蔵されています。 ウユニ塩湖 リチウムイオンとは イオンとは、電子の過剰または欠損により電荷を帯びた原子(または原子団)のことを言います。 リチウムイオンが電解質を通して正極と負極を行き来するときに正極と負極を結ぶ回路に電子の流れ(電流)が発生するので、電池の充電・放電が可能になります。 リチウムはすべての元素の中で最もイオン化しやすい(イオン化傾向が強い)元素です。 リチウムイオン電池の充放電のしくみ - 充電 リチウムイオン電池の電極は、正極・負極ともに層状になっており、層の内部にリチウムイオンをためることができます。 リチウムイオン電池を充電すると、正極から負極に電子が移動するとともにリチウムイオンが正極から電解質をとおって負極に溜め込まれ、これにより正極と負極の間に電位差が発生します。 これが電池が充電された状態です。 リチウムイオン電池の充放電のしくみ - 放電 正極と負極に放電回路が接続されると、電位差を解消する為に負極から正極に向かって電子が流れ、電流が発生して放電が始まります。 これにより負極内にためられていたリチウムイオンが電解質を通して正極に移動し、正極内の電子と結合してリチウム酸化物に還元されます。 リチウムイオン電池の材料 - 負極材 リチウムイオン電池の負極材は炭素系の材料が一般的であり、主に黒鉛(LiC 6)が使用されていますが、東芝はチタン酸リチウム(Li 4Ti 5O 12)を負極とした電池SCiBを商品化し販売しています。 リチウムイオン電池の材料 - 電解質 現在市販されているリチウムイオン電池には、電解質として有機溶媒にリチウム塩(LiPF 6、LiBF 4、LiClO 4等)を1モル程度溶解させた有機電解液が用いられています。 また電解液にポリエチレンオキシド(PEO)、ポリプロピレンオキシド(PPO)、ポリフッ化ビニリデン(PVdF)等のポリマーを加えてゲル化したものを、一般にリチウムポリマー電池と呼びます。 リチウムイオン電池の材料 - セパレータ リチウムイオン電池のセパレータは、ポリオレフィンと呼ばれる化合物からできた厚さ25マイクロメートルほど、表面には1マイクロメートル以下の小さな穴が開いた膜が用いられます。 その材質にはポリエチレン(PE)やポリプロピレン(PP)等があります。 最もバランスの取れた正極材料として、モバイル機器を中心に幅広く使用されていますが、コバルトが高価でありかつ価格変動が大きく、また熱暴走の危険があるため車載用への応用は安全性に課題があるといわれています。 ニッケル系のなかでもNCA系と呼ばれるタイプは、安全性を高める加工を施して商品化されており、プリウス・プラグインハイブリッドに搭載されている電池は、プライムアースEVエナジーが製造するNCA系のリチウムイオン電池です。 主要なメーカーには、日産リーフに電池を供給するオートモーティブエナジーサプライ、三菱iMiEVに電池を供給リチウムエナジージャパン、GMボルトに電池を供給するLGケム、ダイムラー・BMW・北京汽車に電池を供給するジョンソンコントロールズ・サフトなどがあります。 リン酸鉄系は電池内部で発熱があっても結晶構造が崩壊しにくく、安全性が高い上に、鉄を原料とするためマンガン系よりもさらに安く製造できるメリットがあります。 欠点としては、その他のリチウムイオン電池の定格電圧が3. 7V程度であるのに対し、リン酸鉄系は3. 2V程度しかなく、エネルギー密度が低い事があげられます。 製造メーカーは中国のBYD、フィスカー向けに電池を供給していたA123、日本国内ではエリーパワーがあります。 (Li Ni-Mn-Co O2リチウムイオン電池は、正極材であるコバルト酸リチウムのコバルトの一部をニッケルとマンガンで置換し、コバルト・ニッケル・マンガンの3種類の原料を使用することで安定性を高めたものです。 この形式を採用しているメーカーは、スズキのレンジエクステンダー向けにリチウムイオン二次電池を供給することを発表した三洋電機や、ホンダが開発を進めるPHEV向けに電池を供給するブルーエナジージャパンがあります。 負極に黒鉛を使用する従来型リチウムイオン二次電池に比べ、チタン酸系は6倍の長寿命と10分以内に充電が可能な急速充電を実現しています。 欠点としては、その他のリチウムイオン電池の定格電圧が3. 7V程度であるのに対し、チタン酸系は2. 4V程度しかなく、エネルギー密度が低い事があげられます。 揮発性・引火性のある電解液を用いるリチウムイオン電池よりも安全性の高さが唄われる反面、柔軟性のある筐体を折り曲げたり、または過充電・過放電により筐体が膨らむなどの理由で内部短絡(ショート)が生じると発火・炎上する危険性もあります。 ほぼすべての携帯電話・スマートフォン・タブレット等の電源として使用されています。 リチウムイオン電池の充放電特性 リチウムイオン電池の充放電特性は、充放電間の電圧変化が少ないのが特徴です。 逆に充電末期と放電末期には急激に電圧が上昇・下降するので注意が必要です。 下図はリン酸鉄型リチウムイオン電池の充放電特性の一例です。 リチウムイオン電池の発火事故 2006年に大きな社会問題となったリチウムイオン電池の発火事故により、「リチウムイオン電池は発火する危険性がある」という不安が根強くあります。 日本を代表する電機メーカーの1つであるソニー製の電池が発火したという衝撃は、それほどインパクトの強いものでした。 2006年6月、大阪のあるホテルで開催された会議中に米デル社製のノートパソコンが突如発火・炎上しました。 原因はパソコンに搭載されたリチウムイオン電池の不良とされ、デルはノートパソコン用のリチウムイオン電池を自主回収することを発表し、ついでアップルもノートパソコン用電池をリコールすることを発表しました。 さらに、中国レノボ社のノートパソコン用リチウムイオン電池も発火事故を起こしていたことが明らかとなり、各社に電池を供給していたソニーエナジーデバイス社の対応に世間の注目が集まりました。 ソニーエナジーデバイスは発火事故の原因として、電池製造の際に微細な金属粉が混入し、これにより電池内部でショートが発生し過熱・発火につながったことは認めたものの、同時にノートパソコン側の急速充電システムも事故原因の1つであると主張し、きちんと充電制御がなされていれば発火事故は起きないので他のメーカーの電池は回収する必要がないと発表したため、騒ぎが大きくなりました。 ところがその後も発火事故が発生したためソニーに対する批判が高まり、結局対象となるすべての電池を全世界で回収する事態に追い込まれ、リコール対象は約1000万個、回収に伴う費用として約500億円の計上を余儀なくされました。 その後もリチウムイオン電池の発熱・発火・発煙等の事故、及びこれに伴う電池のリコールの発表がありましたが、再び大きくメディアに取り上げられたのは2013年に発生したボーイング787のリチウムイオン電池の発煙・発火事故でした。 ボーイング787搭載のリチウムイオン電池の発煙・発火事故 2013年1月、ボストン・ローガン空港に駐機中のJAL008便のボーイング787型機の機体内部で、搭載されたGSユアサ製リチウムイオンバッテリーが発火しました。 さらに同月に香川県上空を飛行中のANA692便のボーイング787において、機体内部での発煙を知らせるメッセージが表示されるとともに異臭もしたため、高松空港に緊急着陸しました。 このトラブルを受けてアメリカ連邦航空局FAAはボーイング787型機の飛行停止を命じ、当時ボーイングの最新鋭機であった787型機の飛行が全世界で運行停止されるという事態に陥りました。 事故原因の調査にあたった米国家安全運輸委員会NTSBは、事故原因として、搭載されたバッテリーシステムのうち1つの電池セルの内部でショートが発生し、過大な電流が流れたことにより、他の電池も連鎖的に異常な高温となり熱暴走の状態となって発熱・発煙した、と指摘しましたが、ショートの原因については、極度の低温下で電解液中のリチウムイオンがリチウム金属として析出したか、あるいは製造過程において微細な金属片が混入した等の可能性をあげたものの、電池の損傷が激しく原因の特定には至りませんでした。 電気用品安全法(PSE)によるリチウムイオン電池の規制 リチウムイオン電池の発熱・発火事故が多発する事態を受け、2008年5月に電気用品安全法施行令が改正されリチウムイオン電池が規制対象(特定以外の電気用品)となりました。 規制対象となるのは、 リチウムイオン蓄電池(単電池1個当たりの体積エネルギー密度が400ワット時毎リットル以上のものに限り、自動車用、原動機付自転車用、医療用機械器具用及び産業用機械器具用のもの並びにはんだ付けその他の接合方法により、容易に取り外すことができない状態で機械器具に固定して用いられるものその他の特殊な構造のものを除く。 ) です。 この規制対象に該当するリチウムイオン電池は、 に適合する必要があります。 また規制対象のリチウムイオン電池を取り扱う業者は、事業の届出から技術基準適合義務、適合性検査、製品の検査・表示義務等の一連の手続きを経てから販売することができます。 リチウムイオン電池のバッテリーマネジメントシステム(BMS) リチウムイオン電池のセルを直列・並列接続してユーザーが必要とする電圧・容量を持つバッテリーシステムを作る場合、複数のセルの充放電を制御する機能が必要となります。 BMSには以下のような機能があります。 Ahは A(アンペア)xh(時間) の積算値であり、同様にWhは W(ワット:A(アンペア)xV(電圧))xh(時間) となります。 たとえば40Ahの容量をもつ電池の場合、単純計算でいくと40Aの電流を1時間、20Aの電流であれば2時間、10Aの電流であれば4時間放電することができます。 しかし実際には、次項で説明する「時間率」によって放電量と放電時間が変わってきます。 電池から取り出せる電力量は、その電池が蓄えられる電力量だけでなく、その電力の取り出し方によっても変化します。 具体的には、大きな電気を短時間で取り出すより、小さな電気を長時間かけて取り出す方が、より多くの電気を取り出すことができるのです。 しかし、これではそのバッテリーの容量を表すことができませんので、時間率(HR)という単位で基準化して表しています。 たとえば、定格容量40Ah(1時間率)の電池の場合、40Aの電流で1時間放電することができますが、20Aの電流であれば2時間以上の放電が、10Aの電流であれば4時間以上の放電が可能です。 一般に、国内の自動車用のバッテリーは5時間率(5HR)、欧州の自動車用のバッテリーは20時間率(20HR)で容量が表示されています。 これにより、容量の異なる電池同士の特性を条件をそろえて比較するすることができます。 放電レートが1Cとは,ある容量のセルを定電流放電して,ちょうど 1 時間で放電終了となる電流値のことを言います。 例えば,定格容量40Ahの電池において1Cの放電とは40Aの放電を表します。 これを20Aの電流で放電させた場合は0.5Cの放電であり、80Aの電流で放電させた場合は2Cの放電となります。 充電についても同様にCレートで表すことができます。 michinokutd.

次の

自動車用バッテリーはリチウムへシフトする

リチウムイオンバッテリー

関連記事 ・ ・・・ 容量が無くなるとはどういう状態? まず、長持ちさせるテクニックを知る前に、容量が無くなると言う現象について理解しておきましょう。 バッテリーの容量と言うのは、 バッテリーの電気が無くなるまでにどれくらいの電流を流すことが出来るかで算出されています。 しかし、バッテリーの電気が無くなっても、実は電気自体は残っています。 単に、電子機器を動かせるだけの「 電圧が無い」と言うだけなのです。 つまり、バッテリーの電気が無くなったと言うのは、「 必要な電圧が出なくなった」と言う意味であって、中の電気が無くなったと言う意味ではありません。 そこから導き出されるのは、 必要な電圧が出にくくなるだけでも容量が少なくなるということなのです。 必要な電圧が出にくくなる現象は、バッテリー内部の化学反応が起こりにくくなることで発生しますが、それを一般的には電池の消耗と呼びます。 では、どうするとその化学反応が起こりにくくなる(消耗する)のでしょうか? 長持ちさせたい場合にやってはいけないこと まず、リチウムイオンバッテリーの消耗を防ぎ、長持ちさせるために やってはいけない三原則から説明します。 電池を使い切る• 急速充電(高電圧・大電流充電) の多用 基本的に上から順に消耗を早める行為になっています。 理由について順番に説明していきましょう。 電池を使い切るのがダメな理由 バッテリーが高温に弱いとか、高速充電が消耗を早めると言う話は聞いたことがあるでしょう。 しかし、使い切ると良くないと言うのは知らない人がいるかもしれません。 これは、 ニッケル水素電池やニカド電池などを使う場合、使いきらないで充電するのは良くないと言われていたからです。 これは、「メモリー効果」と呼ばれる、電池を使いきらずに充電する(継ぎ足し充電)と容量が見かけ上減ってしまう現象に対する対策でした。 しかし、リチウムイオンバッテリーの場合はメモリー効果が殆ど発生しませんので、 使い切る前に充電する継ぎ足し充電によって容量が減ってしまうことはありません。 一方で、リチウムイオンバッテリーはかなり高い電圧で動作するように作られている大容量・高出力の電池です。 それでも、使い続けると容量が減り、どんどん電圧が下がっています。 そして、それがメーカーで頻繁に使うと想定していない電圧まで下がってしまうと、リチウムイオンだけでなく、 リチウムイオン以外の金属部品が溶けてイオン化し始めます。 その状態で充電すると、溶けた金属が予期せぬ部品と結合して固まります。 すると、 排水口にゴミが詰まるように電気の流れが悪くなっていくのです。 この現象が発生すると、同じ時間充電しても以前までのように高い電圧が出なくなります。 つまり、電池が消耗するのです。 また、 使いきった状態で長時間放置すると「過放電」と言う状態になり、そうなると致命的な劣化を招きます。 場合によっては、それだけで使用不能になりますので注意しましょう。 もちろん、多少使い切ったぐらいでは問題になりませんし、普通は過放電になる前に制御装置が働いて過放電を防ぎます。 しかし、低電圧状態に近づくと上述の現象が多かれ少なかれ発生しますので、使い切る習慣がある人は気をつけた方が良いかもしれません。 (次ページ: バッテリーを高温状態にすると?) で、フェイズドアレイアンテナについてご説明させていただきました。 この記事ではあくまでレーダーの技術として扱っていますが、フェイズドアレイアンテナは通信技術にも使える高度なアンテナです。 2016年1月には三菱電機が次世代通信技術としてフェイズドアレイアンテナを使った通信技術を発表しましたが、スマホの発達とデータの高密度化に伴って無線通信技術にもフェイズドアレイアンテナのようなアンテナが使われる時代が近づいています。 フェイズドアレイアンテナを使った通信技術と聞くと仰々しいですが、フェイズドアレイアンテナのように 「電波を重ねる」事で電波を遠くに飛ばす技術は既に身近で使われています。 皆さんが普段使っているLTE通信や新しいWi-Fiルーターに搭載されている11ac規格も、ビームフォーミングと呼ばれる「電波を重ねる」通信技術に対応しているのです。 今までにはなかったこの新しい通信技術について、簡単にご説明していきましょう。

次の